

CP violation & semileptonic decays in beauty and charm

LHCP June 8, 2018 Laurent Dufour, *on behalf of the ATLAS, CMS and LHCb collaborations*

Wolfenstein parametrisation

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Complex: source of CP violation!

violation

Wolfenstein parametrisation

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Test the consistency of this triangle

LHCP \cdot June 8th 2018 \cdot 3

[LHCB-PAPER-2011-029]

 B^0

 B_s^0

Example of CP violation

$B_s \rightarrow K^- \pi^+, B^0 \rightarrow K^+ \pi^-$

$$A_{CP} = \frac{|\bar{A}_{\bar{f}}|^2 - |A_f|^2}{|\bar{A}_{\bar{f}}|^2 + |A_f|^2}$$

 $\bar{A}_{\bar{f}}$ Amplitude of \bar{B}^0 to K- π^+ A_f Amplitude of B^0 to K+ π^-

$B_s \rightarrow K^- \pi^+, B^0 \rightarrow K^+ \pi^-$

$$A_{CP} = \frac{|\bar{A}_{\bar{f}}|^2 - |A_f|^2}{|\bar{A}_{\bar{f}}|^2 + |A_f|^2}$$

 $ar{A}_{ar{f}}$ Amplitude of $ar{B}^0$ to K- π + A_f Amplitude of B^0 to K+ π -

CP violation in decay

STRATEGY

$B_s \rightarrow K^- \pi^+, B^0 \rightarrow K^+ \pi^-$

Count the number of decays + correct for the production and instrumental asymmetry.

b baryons: Λ_b

[LHCB-PAPER-2018-025 in prep]

 $b \rightarrow pK, \Lambda_b \rightarrow p\pi$

Similar diagrams to $B_s \rightarrow K^- \pi^+, B^0 \rightarrow K^+ \pi^-!$

[LHCB-PAPER-2018-025 in prep]

Nev

[LHCB-PAPER-2018-025 in prep]

Nev

Direct CPV in charm

- Complicated calculations.
 - Expectation: little CP violation.
- ✓ Enormous production at the LHC

(not to scale)

[LHCb-PAPER-2017-044]

$\Delta A_{CP} \wedge_{C}^{+}$

CPV in Cabibbo suppressed $\Lambda_c \rightarrow pKK$ and $\Lambda_c \rightarrow p\pi\pi$?

Optimise for the *difference* only: $A_{CP} \left(\Lambda_c^+ \to p K^+ K^- \right) - A_{CP} \left(\Lambda_c^+ \to p \pi^+ \pi^- \right)$ $(HCP \cdot June 8th 2018 \cdot 14)$

weighting procedure

[LHCb-PAPER-2017-044]

$\Delta A_{CP} \wedge_{C}^{+}$

Details: Talk by A. Pearce, this afternoon

 $\Delta A_{CP}^{\rm wgt} = (0.30 \pm 0.91 \pm 0.61)\%,$

LHCP • June 8th 2018 • 15

RESULT

The B_s flagship

Willem van de Velde the Elder

Willem van de Velde the Elder

The mass eigenstates are mixtures of the flavour eigenstates

$$\langle B^0_{s\ L,H}| = p \langle B^0_s| \mp q \langle \bar{B}^0_s|$$

Phase

Mass difference, Δm_s Decay width difference $\Delta \Gamma_s$ Oscillation frequency

Experimental evidence (~0.3%) + theoretical predictions: CP eigenstates ~ mass eigenstates

CP violation in decay

CP violation in decay+mixing

CP violation in decay+mixing

CP violation in decay+mixing

Illustration by Matthew Kenzie

Time-dependent CP asymmetry

$$A_{CP}(t) = \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} = \frac{-C_f \cos(\Delta m_{d,s} t) + S_f \sin(\Delta m_{d,s} t)}{\cosh\left(\frac{\Delta\Gamma_{d,s}}{2}t\right) + A_f^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma_{d,s}}{2}t\right)}$$

(1,0)

(0,0)

$\rightarrow \pi^+\pi^-$ results $A_{CP}(t) = \frac{\Gamma_{\bar{B}^0_{(s)} \to f}(t) - \Gamma_{B^0_{(s)} \to f}(t)}{\Gamma_{\bar{B}^0_{(s)} \to f}(t) + \Gamma_{B^0_{(s)} \to f}(t)} = \frac{-C_f \cos(\Delta m_{d,s} t) + S_f \sin(\Delta m_{d,s} t)}{\cosh\left(\frac{\Delta \Gamma_{d,s}}{2} t\right) + A_f^{\Delta \Gamma} \sinh\left(\frac{\Delta \Gamma_{d,s}}{2} t\right)} + \frac{1}{4} \frac{1}{2} \frac{1}{4}$ Fitted observables Candidates / (5 MeV/ c²) 0007 (5 MeV/ c²) 1200 1000 (5 MeV/ c²) 0.5 Asymmetry ^{0.4} LHCb LHCb 0.3 0.2 C_f 0.1 **CPV** decay -0.1 1000 -0.2 -0.3 OS Tag **CPV** interference S_f 500 -0.4 -0.5 8 10 2 4 6 12 0^{1} 5.2 Decay time [ps] 5.4 5.6 5.8 5 $m_{\pi^{+}\pi^{-}}$ [GeV/ c^{2}] (ρ,η) $C_{\pi^+\pi^-} = -0.34 \pm 0.06 \pm 0.01,$ $S_{\pi^+\pi^-} = -0.63 \pm 0.05 \pm 0.01,$ $\frac{V_{ud}\,V_{ub}}{V_{cd}\,V_{cb}^*}$ $\alpha = \phi_{\alpha}$ $\frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*}$ $\gamma = \phi_3$ $\beta = \phi_1$

→ K⁺K⁻:γ

Can be used to constrain γ (using U-spin symmetry) ^[1,2], anticipating update with new results

[1]: R. Fleischer, Phys. Lett. B 459 (1999) 306 (concept)
 [2]: LHCb-PAPER-2014-045 (application)
 [3]: Brod, Zupan, JHEP 1401 (2014) 051

LHCb Run-I data set

Direct γ measurement: B⁰ \rightarrow D⁺ π^-

$B_s \rightarrow J/\Psi K^-K^+$

[LHCb-PAPER-2017-008] (LHCb) [JHEP 08 (2016) 147] (ATLAS) [PLB 757 (2016) 97] (CMS)

Current averages

J. Charles, S. Descotes-Genon, Z. Ligeti, S. Monteil, M. Papucci, and K. Trabelsi [Phys. Rev. D 89, 033016 (2014)]

Impact of mixing analyses

Looking forward to Run-2 updates!

Semileptonic decays

Large branching ratios
 X Technically challenging: partially reconstructed

+ decay length

Lifetimes

Bs

measure momentum + decay length μ

LHCB-PAPER-2017-004

Π

LHCb Run-I data set

LHCb

- Data

— Fit

 $D_{(s)}^{-}$ decay time [ps]

 $\tau_s^{fs} = \frac{1}{\Gamma_s} \left[\frac{1 + (\Delta \Gamma_s / 2\Gamma_s)}{1 - (\Delta \Gamma_s / 2\Gamma_s)} \right]$

Measurement of D_s & B_s lifetimes

 $R(B_s^0/B^0)$

 $R(B_s^0/B^0)$

0

10-

Use B_s and B^0 semileptonic decays, to the same final state particles:

 $B_{(s)} \rightarrow D_{(s)}(\rightarrow KK\pi) \mu \nu$

Decay time acceptance: Measure ratio of lifetimes for B_s/B^0 and $D_{s/}D^+$.

Use world-average for the denominator.

Measuring lifetimes with semileptonic decays is competitive!

[LHCB-PAPER-2018-028 in prep]

Jen

Lifetime of
$$\Omega_c$$

Try to do a similar procedure for Ω_c baryons: current relative uncertainty on Ω_c lifetime is $17\%^{[1]}$. Measure:

 $r_{\Omega_c^0} \equiv \frac{\tau_{\Omega_c^0}}{\tau_{D^+}},$ Using semileptonic decays:

 $B \to D^+ \mu \nu X \qquad \qquad \Omega_b \to \Omega_c^0 \mu \nu X$ $D^+ \to K\pi\pi \qquad \qquad \Omega_c^0 \to pKK\pi$

$$\begin{aligned} \frac{\tau_{\Omega_c^0}}{\tau_{D^+}} &= 0.258 \pm 0.023 \pm 0.010 \\ \tau_{\Omega_c^0} &= 268 \pm 24 \pm 10 \pm 2 \text{ fs}, \end{aligned}$$

^[1]: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

[LHCB-PAPER-2018-028 in prep]

Lifetime of Ω_c

[LHCB-PAPER-2018-028 in prep]

Lifetime of $\Omega_{\rm C}$

^[1]: Browder, Honscheid, Pedrini, arXiv:hep-ph/9606354v2 (for example)

Conclusion

Seen that the domain of time-integrated CPV has been extended to Λ_b . Time-dependent CPV: closing in on the CKM angle gamma and shown the strongest evidence for time-dependent CPV in B_s mesons (B_s \rightarrow KK).

The technique of using semileptonic decays for lifetime proved useful, this time with striking results for the Ω_c^0 baryon.

Eagerly awaiting the Run-2 results!

CP violation & semileptonic decays in beauty and charm

LHCP June 8, 2018 Laurent Dufour, *on behalf of the ATLAS, CMS and LHCb collaborations* BACKUP SLIDES

Systematics lifetime analysis D_s/B_s

	$\sigma[\Delta(D)] \; [\mathrm{ps}^{-1} \;]$	$\sigma[\Delta(B)] \;[\mathrm{ps}^{-1}\;]$
Fit bias	0.0004	0.0009
Decay model of $B_s^0 \to D_s^{*-} \mu^+ \nu$	0.0005	0.0025
Sample composition	0.0007	0.0005
$f_s/f_d(p_T)$	0.0018	0.0028
Decay-time acceptance	0.0049	0.0004
Decay-time resolution	▶ 0.0039	0.0004
Feed-down from B_c^+ decays		0.0010
Total systematic	0.0065	0.0041
Statistical	0.0117	0.0053

Systematics lifetime analysis Ω_{C}

Table 1: Summary of systematic uncertainties on the lifetime ratio, $r_{\Omega_c^0}$, in units of 10^{-4} .

Source	$r_{\Omega^0_c}$
Decay time acceptance	13
Ω_b^- prod. spectrum	3
Ω_b^- lifetime	4
Decay time resolution	3
Background subtraction	18
$H_c(\tau^-, D)$, random μ^-	8
Simulated sample size	98
Total systematic	101
Statistical uncertainty	230

[LHCB-PAPER-2016-013]

Semileptonic decays

Fit the decay time distribution (split by 1 flavour tag), using all components: access to $\Gamma(B_s \rightarrow f)$

Use the mass resolution to select the correct decay.

All phis measurements

Table 1: Direct experimental measurements of $\phi_s^{c\bar{c}s}$, $\Delta\Gamma_s$ and Γ_s using $B_s^0 \to J/\psi \phi$, $J/\psi K^+K^-$, $\psi(2S)\phi$, $J/\psi \pi^+\pi^-$ and $D_s^+D_s^-$ decays. Only the solution with $\Delta\Gamma_s > 0$ is shown, since the two-fold ambiguity has been resolved in Ref. [1]. The first error is due to statistics, the second one to systematics. The last line gives our average.

Exp.	Mode	Dataset	$\phi^{c\overline{c}s}_{s}$	$\Delta\Gamma_s \ (\mathrm{ps}^{-1})$	Ref.
CDF	$J\!/\psi\phi$	$9.6{\rm fb}^{-1}$	[-0.60, +0.12], 68% CL	$+0.068\pm 0.026\pm 0.009$	[2]
D0	$J\!/\psi\phi$	$8.0\mathrm{fb}^{-1}$	$-0.55^{+0.38}_{-0.36}$	$+0.163^{+0.065}_{-0.064}$	[3]
ATLAS	$J\!/\!\psi\phi$	$4.9\mathrm{fb}^{-1}$	$+0.12 \pm 0.25 \pm 0.05$	$+0.053 \pm 0.021 \pm 0.010$	[4]
ATLAS	$J\!/\psi\phi$	$14.3{\rm fb}^{-1}$	$-0.110 \pm 0.082 \pm 0.042$	$+0.101\pm 0.013\pm 0.007$	[5]
ATLAS	above 2	combined	$-0.090 \pm 0.078 \pm 0.041$	$+0.085\pm 0.011\pm 0.007$	[5]
CMS	$J\!/\!\psi\phi$	$19.7{\rm fb}^{-1}$	$-0.075 \pm 0.097 \pm 0.031$	$+0.095\pm 0.013\pm 0.007$	[6]
LHCb	$J/\psi K^+K^-$	$3.0\mathrm{fb}^{-1}$	$-0.058 \pm 0.049 \pm 0.006$	$+0.0805 \pm 0.0091 \pm 0.0032$	2 [7]
LHCb	$J\!/\psi\pi^+\pi^-$	$3.0\mathrm{fb}^{-1}$	$+0.070\pm 0.068\pm 0.008$		[8]
LHCb	$J/\psi K^+ K^{-a}$	$3.0{\rm fb}^{-1}$	$+0.119\pm 0.107\pm 0.034$	$+0.066\pm 0.018\pm 0.010$	[9]
LHCb	above 3	combined	$+0.001 \pm 0.037 (tot)$	$+0.0813 \pm 0.0073 \pm 0.0036$	5 [9]
LHCb	$\psi(2S)\phi$	$3.0\mathrm{fb}^{-1}$	$+0.23^{+0.29}_{-0.28} \pm 0.02$	$+0.066^{+0.41}_{-0.44} \pm 0.007$	[10]
LHCb	$D_s^+ D_s^-$	$3.0\mathrm{fb}^{-1}$	$+0.02 \pm 0.17 \pm 0.02$		[11]
All comb	oined		-0.021 ± 0.031	$+0.085 \pm 0.006$	

^a $m(K^+K^-) > 1.05 \text{ GeV}/c^2$.